I have made a template for 010 Editor which parse data but i can't figure out code for converting matrices to euler.
Order should be ZYX.
Here's Template to mod. Thanks in advance!
Code: Select all
uint64 PHYSICS_MDL_TABLE_COUNT,NULL;
struct{
struct {
float m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
POS_X,POS_Y,POS_Z,VAL12;
uint FILE_ID0,FILE_ID1,FILE_ID0_TMP,FILE_ID1_TMP;
Printf("File ID = %u File ID1 = %u\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\nPos X = %f\nPos Y = %f\nPos Z = %f\n\n",FILE_ID0,FILE_ID1,m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23,POS_X,POS_Y,POS_Z);
}POS_XYZ[PHYSICS_MDL_TABLE_COUNT]<optimize=false>;
}PHYSICS_MDL_POS_TABLE;
BTW i used this online converter
Code: Select all
http://www.andre-gaschler.com/rotationconverter/
EDiT: Here's some code in C++
Code: Select all
// Checks if a matrix is a valid rotation matrix.
bool isRotationMatrix(Mat &R)
{
Mat Rt;
transpose(R, Rt);
Mat shouldBeIdentity = Rt * R;
Mat I = Mat::eye(3,3, shouldBeIdentity.type());
return norm(I, shouldBeIdentity) < 1e-6;
}
// Calculates rotation matrix to euler angles
// The result is the same as MATLAB except the order
// of the euler angles ( x and z are swapped ).
Vec3f rotationMatrixToEulerAngles(Mat &R)
{
assert(isRotationMatrix(R));
float sy = sqrt(R.at<double>(0,0) * R.at<double>(0,0) + R.at<double>(1,0) * R.at<double>(1,0) );
bool singular = sy < 1e-6; // If
float x, y, z;
if (!singular)
{
x = atan2(R.at<double>(2,1) , R.at<double>(2,2));
y = atan2(-R.at<double>(2,0), sy);
z = atan2(R.at<double>(1,0), R.at<double>(0,0));
}
else
{
x = atan2(-R.at<double>(1,2), R.at<double>(1,1));
y = atan2(-R.at<double>(2,0), sy);
z = 0;
}
return Vec3f(x, y, z);
}
EDiT:
After some digging i finally found solution.
Used GNU Octave with this code:
Code: Select all
function convert_3x3mat2eul
R = [-0.001869 -0.003010 -0.999994; -0.022299 0.999747 -0.002945; 0.999750 0.022276 -0.001943];
[x,y,z] = decompose_rotation(R);
digits(10);
x0 = rad2deg(x);y0 = rad2deg(y);z0 = rad2deg(z); # code for converting radians to degrees
RotX = vpa(x0), RotY = vpa(y0), RotZ = vpa(z0) # final code for more output digits
end
function [x,y,z] = decompose_rotation(R)
x = atan2(R(3,2), R(3,3));
y = atan2(-R(3,1), sqrt(R(3,2)*R(3,2) + R(3,3)*R(3,3)));
z = atan2(R(2,1), R(1,1));
end